Connection and Covariant Derivative?

https://www.youtube.com/watch?v=cEEahoUUGyc

Vector Space Abstraction

Key message: covariant derivative (or connection) 是一種 vector space.

image-20230709092121385

Two Views

Covariant derivative (extrinsic view with normal component subtracted): Bird-Eye-View (BEV)

Intrinsic view (Bug-Eye-View) BEV ??!

image-20230709185529006

image-20230709185010579

image-20230709223358116

Geodesic 就是第一項為 0.

image-20230709185610745

Intrinsic 用球面為例

External View

image-20230709185807221

For Intrinsic View : No more global x,y,z (use u, v), no global origin, no position vectors, R

image-20230709190016054

而是:

image-20230709190129557

image-20230709190251662

image-20230709190327944

Covariant Derivative

image-20230709190418846

沒有 normal vector, just ignore!

image-20230709223136125

Need a new strategy to compute Christoffel symbol!!

In intrsinc geometry, metric tensor needs to be given!!

如果是已知的 manifold, 可以直接計算 metric tensor (from external view).

如果是廣義相對論或其他物理,metric tensor 可以猜出來,or from God.

只要給定 metric tensor, 可以計算 (Intrinsic) Christoffel symbol, 以及 (intrinsic) curvature.

image-20230709191009204

image-20230709205304274

Connection = Covariant Derivative

image-20230709092249384

image-20230709092410665

image-20230709205520745

image-20230709205946301

image-20230709210122697

  • Directional derivative 一般只是 on scalar function/field (i.e. gradient). 可以擴展到 vector function/field 就是 covariant derivative!
  • Directional derivative on scalar field 就是梯度,是 covariant! 所以擴展到 vector field 的 covariant derivative 也是 covariant!
  • 下面 1, 2 式 a, b是常數。3, 4 f 是 scalar field. 滿足 vector space 的定義。
  • \[\begin{aligned} & \nabla_{a \vec{w}+b \vec{t}} \vec{v}=a \nabla_{\vec{w}} \vec{v}+b \nabla_{\vec{t}} \vec{v} \\ & \nabla_{\vec{w}}(\vec{v}+\vec{u})=\nabla_{\vec{w}} \vec{v}+\nabla_{\vec{w}} \vec{u} \\ & \nabla_{\vec{w}}(f \vec{v})=\left(\nabla_{\vec{w}} f\right) \vec{v}+f\left(\nabla_{\vec{w}} \vec{v}\right) \\ & \nabla_{\partial_i}(f)=\frac{\partial f}{\partial u^i} \end{aligned}\]

image-20230709092820300

##

image-20230709094449895

image-20230709161855358