Math AI - Diffusion vs. SDE

Reference

2011.13456.pdf (arxiv.org) : good reference for Diffusion to SDE from Stanford

PII: 0304-4149(82)90051-5 (core.ac.uk) @andersonReversetimeDiffusion1982 : 專門針對 reverse time SDE equations.

http://pordlabs.ucsd.edu/pcessi/theory2019/gardiner_ito_calculus.pdf

Ito equations

Introduction

全部的重點就是下圖。用一個神經網路逼近 score function! 因爲我們不知道 $p(x)$

image-20230501224624557

Background

Method 1: denoising Score Matching with Langevin Dynamics (SMLD)

主要是利用 neural network 去近似 p(x) 的 score function, i.e. gradient of log likelihood.

image-20230503213753232

image-20230503214401928

Method 2: denoising diffusion probabilistic model (DDPM)

image-20230503214423165

image-20230503214453770

SDE and Reverse SDE

Forward SDE

image-20230503215110115

Backward SDE

image-20230503215131764

image-20230503222636700

DDPM (Variance Preserving SDE)

image-20230503224837519

SMLD (Variance Exploding SDE)

image-20230503224822757

Sub-Variance Preserving SDE

image-20230503225442004