Source
- https://www.youtube.com/watch?v=_bqa_I5hNAo
- Cross-Entropy loss, excellent video: https://youtu.be/KHVR587oW8I
Takeaways
-
Auto-encoder vs. Variational Auto-Encoder is like Hopfield network (memory or discrimanative) vs. Boltzman machine (generative part)?
-
Karpathy said neural network is only a compression machine. The is only like Hopfield network. But neural network has the generative part not captured by compression machine!!!!!
-
Machine Learning = Compression (Hopfield network capability) + Generation (Stochasticity is the key + Hidden Units)
-
Analytic AI (discriminative AI): model focuses on cross-entropy loss. Generative AI is variational inference: model focus on cross-entropy loss (or reconstruction loss) + regularization loss (KL divergence gap)
-
Less is more structure!
Introduction
It sounds like a big title. That’s not what I mean. I just need to come up with a better title later. I am inspired by the youtube video. Specifically, how AI is evolved (or disrupt) from deterministic to stocahstic. This is the key. How about the other key, hidden states?
Application: procedure task (like autonomous drive, ZIP code detection) –> (maybe a transition of sytle change) –> creative task like song/article/music creation!
Analogy: compression machine (in Karpathy’s youtube video) –> generative AI (auto-regression or diffusion)
Model: Hopfield network –> (Rristriced) Boltzman machine
Algorithm: discriminative (encoder like) –> Generative (decoder based) [[2024-07-24-Less_Is_More_Transformer]]

重點:
-
自動編碼器與變分自動編碼器就像霍普菲爾德網絡(記憶或區分性)與玻爾茨曼機(生成部分)?
-
卡爾帕西表示神經網絡只是一個壓縮機。這僅類似於霍普菲爾德網絡。但神經網絡擁有壓縮機無法捕捉到的生成部分!!!!
介紹:
這聽起來像是一個大標題。這不是我所想的。我只是需要稍後想出一個更好的標題。 我受到YouTube視頻的啟發。具體來說,人工智慧是如何從確定性演變(或顛覆)為隨機性。
應用:程序任務(例如自主駕駛、郵遞區號檢測) –> (也許是一種風格轉變的過渡) –> 創意任務,如歌曲/文章/音樂創作!
模型:霍普菲爾德網絡 –> 玻爾茲曼機
算法:區分性(類似編碼器) –> 生成性(基於解碼器)[[2024-07-24-Less_Is_More_Transformer]]